
Idiopathic Pulmonary Fibrosis
Time to get personal
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SUMMARY
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and 
debilitating disease of unknown etiology. Median survival after 
diagnosis ranges from 3 to 5 years. The clinical course of the disease 
is highly heterogeneous and unpredictable. Despite this heteroge-
neity, the two novel compounds, pirfenidone and nintedanib, are 
administered uniformly to patients with IPF with little correlation 
to inter-individual differences. Personalized medicine refers to a 
medical model aiming to determine disease susceptibility, tailor the 
ideal treatment, predict and improve outcome according to individu-
als’ molecular and environmental profile. The conceptualization of 
precision medicine dates back to the era of Hippocrates, the father 
of western medicine, who first coined out the term “idiosyncrasy” 
to describe the individuality in the clinical course of the disease. 
Compared to oncology, precision medicine approaches in IPF have 
significantly lagged behind. Disease management and prognostica-
tion is still based on functional and physiological parameters, which 
present with several caveats and provide no mechanistic insights. 
This short review article summarizes the current state of knowledge 
in the prognostic and therapeutic field of IPF, highlights the most 
recent findings and addresses the pressing need to integrate mo-
lecular biomarkers in the everyday clinical practice.
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InTroDuCTIon

Idiopathic pulmonary fibrosis (IPF) represents a devastating chronic lung 
disease of unknown origin, characterized by the complex interaction of envi-
ronmental, immunologic, genetic and epigenetic factors1-6. Median survival 
after diagnosis ranges from 3 to 5 years7. The clinical course of the disease is 
highly unpredictable and heterogeneous8. Based on current functional and 
physiological indices, patients are categorized into three distinct patterns of 
disease progression: slow progressors, rapid progressors and patients with 
relative stability interposed by periods of rapid acceleration named acute 
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exacerbations8-10. Until recently, lung transplantation was 
the only approach that could prolong patients’ survival. 
To this end, two novel compounds (pirfenidone and nint-
edanib), able to reduce the rate of progression, represent 
the pharmaceutical treatment approved for the disease11,12. 
These  compounds are administered uniformly to patients 
with IPF based on diagnosis and with little correlation to 
inter-individual differences13.

Personalized medicine dates back to the times of Hip-
pocrates who stated that ‘’It’s far more important to know 
what person the disease has than what disease the person 
has’’  and refers to a medical model aiming to determine 
disease susceptibility, tailor the ideal treatment, predict 
and improve outcome according to patients’ molecular 
and environmental profile14,15. However, it was not until the 
19th century that significant progress has been achieved, 
as Reuben Ottenberg reported the first known blood 
compatibility test in 1907. The past 2 years precision 
medicine initiatives have drugged much of attention13. 
Unfortunately, personalized medicine approaches in IPF 
have significantly lagged behind16,17. In the past few years, 
several conventional therapeutic regimens led to fatal-
side effects18. To this end, there is an amenable need for 
the identification of distinct endotypes and application 
of targeted therapeutic approaches on a pathway-specific 
basis. This short review article summarizes the current state 
of knowledge in the prognostic and therapeutic field of 
IPF and presents ways to optimize the use of precision 
medicine in the everyday clinical practice by providing 
realistic answers to fundamental questions.

WHICH Is THe CurrenT sTaTus useD In THe 
everyDay ClInICal PraCTICe For TreaTMenT 
sTraTIFICaTIon anD PrognosTICaTIon?

Despite disease heterogeneity and complexity, pir-
fenidone and nintedanib are currently administered 
uniformly to patients irrespective of endotypes13,19-21. 
Clinicians usually choose the compound that is theoreti-
cally best tailored to the individual patient, according to 
comorbidities and risk of adverse events. With regards to 
comorbid conditions including lung cancer, pulmonary 
hypertension and gastroesophageal reflux,  the ideal 
approach remains to be elucidated and consensus task 
forces are greatly anticipated16,22-26.

Prognostication is solely based on functional and 
physiological parameters. Currently, forced vital capacity 
(FVC), diffusion capacity for carbon monoxide (DLCO) and 

6-minute walking test( 6MWT) are the main prognostica-
tors used in the real life setting6,27-29. GAP (Gender, Age and 
Physiology variables) score and composite physiologic 
index (CPI) are the two most reliable risk-stratification 
algorithms30,31. However, these parameters present with 
significant caveats including technical variabilities, over-
estimation of FVC in patients with combined pulmonary 
fibrosis and emphysema (CPFE) and erroneous interpre-
tations of 6MWT due to myoskeletal and heart related 
comorbities28,32-34. Finally, all these parameters provide 
no mechanistic insights. 

WHy PersonalIzeD MeDICIne aPProaCHes 
For IPF HaD sIgnIFICanTly laggeD beHInD 
In THe PasT?

IPF is a relatively ‘newly introduced’ disease. Wiliam 
Osler first coined out the term ‘’chronic interstitial pneu-
monia’’ almost a century ago; yet, in this case fibrosis 
was unilateral35. The pathologic term ‘’usual interstitial 
pneumonia (UIP)’’ was introduced by Averill Liebow in 
196836. Until the past few years, IPF was an underecog-
nized entity and considered as an end stage lung disease 
with no effective treatment. Thus, precision medicine ap-
proaches have focused on identification of compounds 
for more common diseases, including anti-IL-5 (mepoli-
zumab), anti-IgE (omalizumab), anti-IL-13 (lebrkizumab 
and tralokinumab) treatment for asthma and  PD-1/
PD-L1 inhibitors (nivolumab and pembrolizumab)  and 
compounds targeting EGFR mutations (erlotinib, gefitinib, 
afatinib) for non-small cell lung cancer17,37-39. 

CoulD geneTICs anD ePIgeneTICs 
ConTrIbuTe To PersonalIzeD MeDICIne 
aPProaCHes? (Table 1)

Common or rare variants have been associated with 
nearly half of IPF cases40-42. Intriguingly, a common variant 
located in the putative promoter region of the MUC5B 
gene (rs35705950) conferred risk for pulmonary fibrosis 
development, but has also been associated with better 
prognosis43-57. Similarly, a toll interacting protein (TOL-
LIP) functional variant (rs5743890) was found protective 
against fibrosis development but was also associated 
with increased mortality among individuals affected16,46. 
Another single nucleotide polymorphism (SNP) within 
TOLLIP (rs3750920) was able to stratify patients with IPF 
based on treatment response to N-acetylcysteine58,59. A 
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functional variant (Leu412Phe, TLR3 L412F) of toll-like 
receptor 3 (TLR3) has been also reported as a marker of 
rapidly progressive disease in patients with IPF60. Fur-
thermore, loss of-function mutations in a TLR3 agonist 
(ELMOD2) have been associated with familial IPF suscep-
tibility61,62. Short leucocyte telomere length has been also 
associated with worse survival in IPF63-66, while patients 
with telomerase mutations were more prone to compli-
cations due to nephrotoxic immunosuppressants and to 
post-transplantation hematologic complications, maybe 
owing to reduced bone marrow reserves67-74. Several other 
mutations in genes have been suggested as biomarkers in-
cluding mutations associated with surfactant proteins15,75. 

Interestingly, patients carrying SFTPA2 mutations had 
also an increased risk of developing lung cancer22,76,77.

With regards to epigenetics,  application of high-
throughput screening methods identified differential-
ly methylated and expressed genes including TOLLIP, 
NOTCH1, Thy-1, CDKN2Ap14ARF and SHOX2 homeobox 
family gene in patients with IPF78-86. Histone demethylase 
and deacetylase inhibitors have been suggested as novel 
therapeutic targets for a subset of patients22,87. Finally, 
both downregulated and so called “anti-fibrotic” (let-7d, 
miR-29) and upregulated (miR-21, miR-154) have been 
considered major orchestrators of pulmonary fibrosis88-93. 
Interestingly, mir-29 has exhibited in vivo therapeutic 

TAble 1. Main biomarkers investigated in IPF and their potential clinical utility in the context of personalized medicine.

Field biomarker Potential clinical utility Reference

Genetics MUC5B Disease susceptibility (45)

TOLLIP Disease susceptibility, treatment responsiveness (46)

TLR3

Telomeres/Telomerase

HLA(DRB1*1501), (DQB1*0602)

Surfactant proteins

Disease prognosis

Disease susceptibility

Disease susceptibility

Disease susceptibility and prognosis

(60)

(66, 67)

(62)

(76)
Epigenetics

Genomics

Proteomics

3D
Pulmospheres

CDKN1A/ p21waf1/cip1 and Fas

let-7d, miR-21, miR-154

miR-29

52-gene-signature T-cell co-stimulatory
Pathway

CCL-18, CXCL13, MMP-7
SP-D,CA 19-9,CA-125

LOXL2

Galectin, CTGF, IL-13, NOX1/NOX4, SHP

3D spheroids of cells  from biopsy

Disease diagnosis

Disease diagnosis

Disease diagnosis, therapeutic target

Disease prognosis

Disease prognosis

Disease prognosis, therapeutic target

Therapeutic targets

Treatment response

(87)

(88, 89, 92)

(95)

(101, 119)

(114, 117, 
118, 127)

(103)

(106-108)
(102, 110)

(128)

CA: carbohydrate antigen or cancer antigen, CCL: Chemokine (C-C motif ) ligand,  CDKN1A: Cyclin Dependent Kinase Inhibitor 
1A,  CTGF: connective tissue growth factor, CXCL: Chemokine (CXC-motif ) ligand,  Fas: Fatty acid synthase, HLA: human leukocyte 
antigen, IL: interleukin , IPF: Idiopathic pulmonary fibrosis, LOXL: lysyl oxidase like-protein,  miR: microRNAs, MMP: Matrix Metal-
loproteinase, MUC: Mucin,  NOTCH: Neurogenic locus notch homolog protein, NOX: NADPH oxidase, SHP: Src homology region 2 
domain-containing phosphatase, SP: surfactant protein, TLR: toll-like receptor, TOLLIP: Toll-interacting protein.
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benefits in several models of pulmonary fibrosis and is 
currently entering the pipeline of clinical trials; yet, caution 
is demanded as such trials exhibit several risks including 
the risk of carcinogenesis94-97.

TIMe To geT Personal? MaIn lessons FroM 
Personal ‘’oMICs’’ ProFIlIng (Table 1)

Kaminski and Selman distinguished patients with IPF 
into rapid progressors and slow progressors based on 
genomics2,98-100. In a follow-up study, a 52-gene outcome-
predictive signature including genes involved in "The 
costimulatory signal during T cell activation" Biocarta 
pathway (CD28, ICOS, LCK, and ITK) discriminated patients 
into two groups with significant difference in transplant-
free survival (TFS)101. 

Proteomics technology led to the identification of 

several novel therapeutic compounds, currently used in 
clinical trials including inhibitors of LOXL2, CTGF, IL-13, 
galectin, NOX1/NOX4, and SHP96,102-110. Moreover, several 
biomarkers validated in independent cohorts, including 
MMP-7, CCL-18, CXCL13 and MMP-degraded extracel-
lular matrix proteins, have been identified through pro-
teomics9,111-113. In particular, increased MMP-7 values have 
been associated with poor prognosis77,114-116. Increased 
levels of circulating chemokine ligand 18 (CCL18) and 
chemokine (C-X-C motif ) ligand 13 (CXCL13) were also 
likewise predictive of IPF progression101,117,118. 

WHaT Has been reCenTly aDDeD To THe FIelD?

Significant progress has been achieved in the context 
of personalized medicine during the last year. A genomic 
risk scoring system (Scoring Algorithm for Molecular 

FigURe 1. Figure 1 depicts main applications of personalized medicine in patients with IPF. A single nucleotide polymorphism 
(SNP) within TOLLIP (rs3750920) was able to stratify patients with IPF based on treatment response to N-acetylcysteine. Patients 
with specific SNPs (MUC5B rs35705950, TOLLIP, rs3750920) present with a survival benefit. Several other biomarkers depicted in 
the figure have been associated with poor prognosis. Finally, combination of a genomic risk scoring system (Scoring Algorithm for 
Molecular Subphenotypes; SAMS) and GAP score after adjustment for several parameters, was able to discriminate patients into 
two risk groups with regards to mortality and transplant free survival.
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Subphenotypes; SAMS) ,able to discriminate patients into 
two risk groups with regards to mortality and transplant 
free survival, has been recently published119. These find-
ings provide evidence that integration of genomic data 
into prognostic algorithms encompassing demographic 
and functional data significantly improves the prediction 
of outcome compared to GAP index alone and address 
the need for more complex criteria than conventional 
demographic and physiologic parameters in studies 
investigating therapeutic effect15,120-126. 

Moreover, the recently published PROFILE study is the 
largest prospective analysis of serum biomarkers in IPF. 
Three epithelium derived biomarkers (CA19-9, CA-125 and 
surfactant protein D) were able both to discriminate stable 
from progressive IPF and identify patients at increased 
risk of mortality127. No studies had previously identified 
CA19-9 as a biomarker of IPF progression or CA-125 as 
a dynamic IPF biomarker, in the past. Furthermore, this 
study validated that high concentrations of baseline 
surfactant protein D and MMP 7 can be used to distin-
guish individuals with disease from controls and predict 
outcome. These results are of paramount importance, 
as they could demonstrate a crucial role in an effort to 
streamline clinical trial designs and even assess treatment 
response based on biomarkers.

Towards the direction of assessment of treatment 
response, another recent study reported that 3D pul-
mospheres (spheroids composed of cells from primary 
lung biopsy) predicted responsiveness in antifibrotic 
compounds and thus the most beneficial anti-fibrotic 
drug for every patient as individual. However, a major 
caveat is the fact that pulmospheres were obtained via 
video-assisted thoracic surgery (VATS)128. Obtaining tissue 
to form 3D pulmospheres with less invasive methods such 
as cryobiopsy could play a cardinal role in personalized 
medicine approaches in the future.

FuTure PersPeCTIves anD ConCluDIng 
reMarks

Despite recent discoveries on disease pathogenesis 
and treatment, IPF still represents an incurable disease. 
Application of precision medicine could predict respon-
siveness in available compounds and lead to efficacious 
treatments for specific IPF endotypes, like mepolizumab 
and omalizumab in asthma and novel regimens in lung 
cancer. Ideal application of personalized medicine involves 
a ‘’ two-way process’’. This process includes 1) extremely 

precise diagnostic tests and biomarkers able to determine 
whether patient may benefit from an intervention or not 
and 2) the therapeutic intervention itself. Several future 
challenges remain to be addressed for the successful ap-
plication of this ‘’two-way process’’ including the following:

Diagnostic tests: Advances in computational power 
and medical imaging (i.e. microCT) are paving the way 
for personalized medical approaches considering and 
combining patient’s anatomical profile along with physi-
ological and genetic features129,130. 

Pharmacogenetic approach: Implementation of bio-
markers and pharmacogenetic approach into future clini-
cal trials is crucial, given the robust information we have 
gained during the past years from biomarkers including 
MUC5B, TOLLIP, MMP-3, MMP-7, CXCL13, lysyl oxidase 
homolog 2, periostin, heat shock protein 70 and type 
V collagen9,40,129,130. A number of such studies (PROFILE, 
COMET, LGRC, the European IPF network registry) have 
already been organized111,131-133. 

Therapeutic interventions: Studies using lung-targeted 
therapies including clinical studies for the role of aerosol-
ized thyroid hormone administration in patients with IPF 
are greatly anticipated134. 

Targeted approach for comorbidities: Clinical trials tar-
geting comorbid conditions including gastroesophageal 
reflux, lung cancer and pulmonary hypertension are also 
of paramount importance. Το this end, studies for proton 
pump inhibitors in IPF present with conflicting results and 
there is caution for their use mainly due to the subsequent 
alteration of lung microbiome. The role of lung-gut axis 
in this context deserves further investigation135,136. The 
results of a phase II clinical trial for laparoscopic anti-reflux 
therapy in IPF will address whether this intervention is 
only a trigger for acute exacerbation or beneficial for a 
subgroup of patients137. Furthermore, there is a press-
ing need for Consensus Task Force addressing the ideal 
diagnostic algorithm and chemotherapeutic regimen in 
patients with IPF and lung cancer138,139. Finally, studies for 
antifibrotics plus a vasodilator or even tyrosine kinase 
inhibitors alone for patients with IPF and pulmonary 
hypertension are anticipated.

Collectively, from FDA’s vantage point, the era of 
precision medicine has already arrived. In 2010, FDA an-
nounced the “Regulatory Science Initiative” highlighting 
personalized medicine as a key priority area and since 2011, 
approximately one-third of files, submitted for compounds 
waiting for approval, included some type of genetic or 
other biomarker data. However, personalized medicine 
in IPF had lagged behind. Thus, there is a pressing need 
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to enrich former president’s Obama precision medicine 
initiative with diseases including IPF, which accounts for 
the same number of deaths with breast cancer in the 
USA and is the non-cancer lung disease with the gravest 

prognosis22,140. It’s upon clinicians’ and researchers’ hands 
to persuade the scientific and political community that 
IPF should be launched into the same trajectory as many 
types of cancer. 

ΠΕΡΙΛΗΨΗ

Ιδιοπαθής Πνευμονική Ίνωση: Ώρα για εξατομικευμένη προσέγγιση

Θεόδωρος Καραμπιτσάκος1, Σεραφείμ Χρυσικός1, Βασίλειος Τζίλας2, Κατερίνα Δημάκου1, 
Δημοσθένης Μπούρος2, Αργύριος Τζουβελέκης2,3

15η Πνευμονολογική Κλινική Νοσοκομείο Νοσημάτων Θώρακος ΝΝΘΑ «ΣΩΤΗΡΙΑ», Αθήνα, 
2Α' Πανεπιστημιακή Πνευμονολογική Κλινική, ΝΝΘΑ «ΣΩΤΗΡΙΑ», Εθνικό και Καποδιστριακό  

Πανεπιστήμιο Αθηνών, Αθήνα, 3Ερευνητικό Κέντρο Βιοϊατρικών Επιστημών  
«Αλέξανδρος Φλέμινγκ», Αθήνα

Η Ιδιοπαθής Πνευμονική Ίνωση (ΙΠΙ) είναι μία χρόνια, προοδευτικά εξελισσόμενη πάθηση άγνωστης αιτί-
ας. Η μέση επιβίωση κυμαίνεται μεταξύ 3 και 5 ετών. Ωστόσο, η κλινική πορεία της νόσου είναι εξαιρετικά 
ετερογενής και απρόβλεπτη. Παρά την ετερογένεια στο προφίλ των ασθενών, τα δύο νέα φάρμακα, η πιρ-
φενιδόνη και το nintedanib, χορηγούνται χωρίς ιδιαίτερη διάκριση ανάμεσα στους ασθενείς με ΙΠΙ. Η εξα-
τομικευμένη/προσωποποιημένη ιατρική αναφέρεται σε ένα ιατρικό μοντέλο ικανό να διαπιστώσει την πι-
θανότητα νόσησης από ένα νόσημα, να βοηθήσει στην επιλογή της βέλτιστης θεραπευτικής προσέγγισης 
αλλά και να επιχειρήσει να προβλέψει την έκβαση του ασθενούς βάσει του μοριακού/περιβαλλοντικού/ 
ατομικού προφίλ του. Η ιδέα της εξατομικευμένης προσέγγισης άρχεται από την εποχή του Ιπποκράτη, 
του πατέρα της δυτικής ιατρικής, που πρώτος χρησιμοποίησε τον όρο "ιδιοσυγκρασία" για να περιγράψει 
την ιδιαιτερότητα που παρουσιάζει κάθε ασθενής στην κλινική του πορεία. Σε σχέση με την ογκολογία, η 
εξατομικευμένη ιατρική στην ΙΠΙ δεν αναπτύχθηκε αντίστοιχα. Η αντιμετώπιση και πρόγνωση της πάθησης 
εξακολουθεί να βασίζεται σε λειτουργικές, φυσιολογικές παραμέτρους, οι οποίες συνοδεύονται από πολλά 
μειονεκτήματα και δεν παρουσιάζουν ιδιαίτερη συσχέτιση με παθογενετικούς μηχανισμούς. Η συγκεκριμέ-
νη βιβλιογραφική ανασκόπηση παραθέτει τις νεότερες εξελίξεις σχετικά με την πρόγνωση και θεραπεία της 
ΙΠΙ και τονίζει την αδήριτη ανάγκη ενσωμάτωσης μοριακών βιοδεικτών στην καθημερινή κλινική πράξη.
Πνεύμων 2018, 31(2):71-80.

Λέξεις - Κλειδιά: Ιδιοπαθής Πνευμονική Ίνωση, Εξατομικευμένη προσέγγιση, Προσωποποιημένη ιατρική, 
Μοριακοί βιοδείκτες, Πρόγνωση, Θεραπεία
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